• <button id="ecio8"></button>
  • <li id="ecio8"></li>
    <s id="ecio8"></s>
    <dl id="ecio8"></dl>
    <center id="ecio8"><noscript id="ecio8"></noscript></center>
    • <table id="ecio8"><source id="ecio8"></source></table>
      <bdo id="ecio8"></bdo>
    • <s id="ecio8"></s>

      代寫AIML 2023-2024 Coursework

      時間:2024-03-17  來源:  作者: 我要糾錯


      AIML 2023-2024 Coursework
      March 12, 2024
        Figure 1: Convolutional neural network for coursework assignment.
      Problem The goal of this take-home assignment is to implement, in Python, a simple two-layer convolutional neural network (CNN) with five inputs x1, . . . , x5, four hidden nodes z1, . . . , z4 and one output y with ReLU activations, according to the diagram shown in Figure 1. The hidden layer and output of the CNN is to be computed along with the gradient of the hidden layer and output with respect to parameter w1. The values oftheparameterswillbew1 =1.2,w2 =−0.2,v1 =−0.3,v2 =0.6,v3 =1.3andv4 =−1.5.
      Instructions The CNN implementation is to be computed using a single Python function in single Python file. The interface to the function should be in the precise format,
      y, z = convnet(x) (1)
      where x = [x1, x2, x3, x4, x5] is a list of five numerical inputs (for example, a set of real numbers x=[0.3,−1.5,0.7,2.1,0.1]), and it should return the value of y as a number of the type dual and, z=[z1,z2,z3,z4] as a list of four numbers of type dual defined in the course code module ad.py. Therefore, when testing, you should expect to import this module. The implementation should use the specific values of the weight parameters given above.
      Submission TopreparethePythoncodefileforsubmission,itmustbenamedintheformatinitials_studentid.py, for instance if your initials are ’AJD’ and your ID is 5716631 then your file should be named ajd_5716631.py. Submit the file through the Assignments page on Canvas. The deadline for submissions is 12pm UK time, 21st March 2024.
      Marking The function will be marked automatically by calling it inside Python, and checking the results against a model solution. A fully correct solution will receive 20 marks. A solution which has a partially correct
      請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

      標簽:

      掃一掃在手機打開當前頁
    • 上一篇:代寫COMP3411/9814 Bridge Puzzle編程代做
    • 下一篇:COMP2207 代做、R 程序設計代寫
    • 無相關信息
      昆明生活資訊

      昆明圖文信息
      蝴蝶泉(4A)-大理旅游
      蝴蝶泉(4A)-大理旅游
      油炸竹蟲
      油炸竹蟲
      酸筍煮魚(雞)
      酸筍煮魚(雞)
      竹筒飯
      竹筒飯
      香茅草烤魚
      香茅草烤魚
      檸檬烤魚
      檸檬烤魚
      昆明西山國家級風景名勝區
      昆明西山國家級風景名勝區
      昆明旅游索道攻略
      昆明旅游索道攻略
    • 高仿包包訂製

      關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
      ICP備06013414號-3 公安備 42010502001045

      欧美成人免费全部观看天天性色,欧美日韩视频一区三区二区,欧洲美女与动性zozozo,久久久国产99久久国产一
    • <button id="ecio8"></button>
    • <li id="ecio8"></li>
      <s id="ecio8"></s>
      <dl id="ecio8"></dl>
      <center id="ecio8"><noscript id="ecio8"></noscript></center>
      • <table id="ecio8"><source id="ecio8"></source></table>
        <bdo id="ecio8"></bdo>
      • <s id="ecio8"></s>
        主站蜘蛛池模板: 亚洲AV香蕉一区区二区三区| 国产xxxx做受欧美88xx00tube| 国产免费资源高清小视频在线观看| 亚洲人成伊人成综合网久久| 91欧美在线视频| 波多野结衣在线中文| 天堂网www资源在线| 免费一级e一片在线播放| www.99re| 波多野结衣护士| 国产青草亚洲香蕉精品久久| 亚洲欧美日韩色| 114级毛片免费观看| 欧美人体一区二区三区| 国产精品一区二区av| 亚洲va久久久噜噜噜久久天堂 | 99ri在线观看| 污污内射在线观看一区二区少妇| 夜夜嗨AV一区二区三区| 亚洲熟女综合色一区二区三区| 91久久精品国产91久久性色也 | 免费夜色污私人影院在线观看| 一二三四在线观看免费高清视频 | 亚洲欧美另类综合| 1213孕videos俄罗斯| 欧洲多毛裸体XXXXX| 国产女人高潮视频在线观看| 久久久久国产精品免费免费搜索| 老子影院午夜理伦手机不卡| 模特侨依琳大尺度流出| 国产成人精品视频一区 | 69视频免费观看l| 欧美69式视频在线播放试看| 国产成人无码一二三区视频| 亚洲午夜一区二区三区| 国产精品久久女同磨豆腐| 日本无卡码一区二区三区| 啊…别了在线观看免费下载| a级国产乱理伦片| 欧美国产综合欧美视频| 国产剧情精品在线观看|