• <button id="ecio8"></button>
  • <li id="ecio8"></li>
    <s id="ecio8"></s>
    <dl id="ecio8"></dl>
    <center id="ecio8"><noscript id="ecio8"></noscript></center>
    • <table id="ecio8"><source id="ecio8"></source></table>
      <bdo id="ecio8"></bdo>
    • <s id="ecio8"></s>

      代寫COMP34212、代做Python/c++程序設計

      時間:2024-04-29  來源:  作者: 我要糾錯



      COMP34212 Cognitive Robotics Angelo Cangelosi
      COMP34212: Coursework on Deep Learning and Robotics
      34212-Lab-S-Report
      Submission deadline: 18 April 2024, 18:00 (BlackBoard)
      Aim and Deliverable
      The aim of this coursework is (i) to analyse the role of the deep learning approach within the
      context of the state of the art in robotics, and (ii) to develop skills on the design, execution and
      evaluation of deep neural networks experiments for a vision recognition task. The assignment will
      in particular address the learning outcome LO1 on the analysis of the methods and software
      technologies for robotics, and LO3 on applying different machine learning methods for intelligent
      behaviour.
      The first task is to do a brief literature review of deep learning models in robotics. You can give a
      summary discussion of various applications of DNN to different robotics domains/applications.
      Alternatively, you can focus on one robotic application, and discuss the different DNN models used
      for this application. In either case, the report should show a good understanding of the key works in
      the topic chosen.
      The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron
      (MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and
      analyse new training simulations. This will allow you to evaluate the role of different
      hyperparameter values and explain and interpret the general pattern of results to optimise the
      training for robotics (vision) applications. You should also contextualise your work within the state
      of the art, with a discussion of the role of deep learning and its pros and cons for robotics research
      and applications.
      You can use the standard object recognition datasets (e.g. CIFAR, COCO) or robotics vision datasets
      (e.g. iCub World1, RGB-D Object Dataset2). You are also allowed to use other deep learning models
      beyond those presented in the lab.
      The deliverable to submit is a report (max 5 pages including figures/tables and references) to
      describe and discuss the training simulations done and their context within robotics research and
      applications. The report must also include on online link to the Code/Notebook within the report,
      or ad the code as appendix (the Code Appendix is in addition to the 5 pages of the core report). Do
      not use AI/LLM models to generate your report. Demonstrate a credible analysis and discussion of
      1 https://robotology.github.io/iCubWorld/
      2 https://rgbd-dataset.cs.washington.edu/index.html
      COMP34212 Cognitive Robotics Angelo Cangelosi
      your own simulation setup and results, not of generic CNN simulations. And demonstrate a
      credible, personalised analysis of the literature backed by cited references.
      Marking Criteria (out of 30)
      1. Contextualisation and state of the art in robotics and deep learning, with proper use of
      citations backing your academic brief review and statements (marks given for
      clarity/completeness of the overview of the state of the art, with spectrum of deep learning
      methods considered in robotics; credible personalised critical analysis of the deep learning
      role in robotics; quality and use of the references cited) [10]
      2. A clear introductory to the DNN classification problem and the methodology used, with
      explanation and justification of the dataset, the network topology and the hyperparameters
      chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
      3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity
      and appropriateness of the network topology; hyperparameter exploration approach; data
      processing and coding requirements) [4]
      4. Description, interpretation, and assessment of the results on the hyperparameter testing
      simulations; include appropriate figures and tables to support the results; depth of the
      interpretation and assessment of the quality of the results (the text must clearly and
      credibly explain the data in the charts/tables); Discussion of alternative/future simulations
      to complement the results obtained) [13]
      5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if
      code/notebook (link to external repository or as appendix) is not included.
      Due Date: 18 April 2024, h18.00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

      請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















       

      標簽:

      掃一掃在手機打開當前頁
    • 上一篇:ENGI 1331代做、代寫R程序語言
    • 下一篇:代做FINM7008、代寫FINM7008 Applied Investments
    • 無相關信息
      昆明生活資訊

      昆明圖文信息
      蝴蝶泉(4A)-大理旅游
      蝴蝶泉(4A)-大理旅游
      油炸竹蟲
      油炸竹蟲
      酸筍煮魚(雞)
      酸筍煮魚(雞)
      竹筒飯
      竹筒飯
      香茅草烤魚
      香茅草烤魚
      檸檬烤魚
      檸檬烤魚
      昆明西山國家級風景名勝區
      昆明西山國家級風景名勝區
      昆明旅游索道攻略
      昆明旅游索道攻略
    • 幣安官網下載 福建中專招生網 NBA直播 WPS下載

      關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
      ICP備06013414號-3 公安備 42010502001045

      欧美成人免费全部观看天天性色,欧美日韩视频一区三区二区,欧洲美女与动性zozozo,久久久国产99久久国产一
    • <button id="ecio8"></button>
    • <li id="ecio8"></li>
      <s id="ecio8"></s>
      <dl id="ecio8"></dl>
      <center id="ecio8"><noscript id="ecio8"></noscript></center>
      • <table id="ecio8"><source id="ecio8"></source></table>
        <bdo id="ecio8"></bdo>
      • <s id="ecio8"></s>
        主站蜘蛛池模板: 巨胸流奶水视频www网站| 精品久久久久久无码中文字幕漫画 | 毛片免费在线观看网站| 强行交换配乱婬bd| 公车上玩两个处全文阅读| 久久香蕉国产线| 久久久噜久噜久久gif动图| 最近中文字幕无免费视频| 国产欧美日韩另类| 久草视频在线免费看| 黄网站色视频免费看无下截| 日韩在线你懂的| 国产亚洲精久久久久久无码| 亚洲伊人色欲综合网| a在线观看免费| 波多野结衣中文丝袜字幕| 性欧美激情videos| 再深一点灬舒服灬太大了| free哆拍拍免费永久视频| 激情艳妇之性事高h| 国产精品第一页第一页| 人人澡人人爽人人| 91福利视频免费| 欧洲精品一区二区三区| 国产在线观看一区二区三区 | 国产成人亚洲欧美激情| 亚洲日韩一区二区一无码| yellow版字幕网| 澳门特级毛片免费观看| 国产精品入口在线看麻豆| 久久精品视频6| 美女扒开粉嫩尿口的漫画| 日本三级在线观看中文字| 国产成人精品美女在线| 久久久久亚洲Av片无码下载蜜桃| 黑人巨茎大战白人美女| 日本午夜小视频| 免费看a级黄色片| 6580岁老太婆| 日本精品久久久久中文字幕| 十大最污软件下载|