• <button id="ecio8"></button>
  • <li id="ecio8"></li>
    <s id="ecio8"></s>
    <dl id="ecio8"></dl>
    <center id="ecio8"><noscript id="ecio8"></noscript></center>
    • <table id="ecio8"><source id="ecio8"></source></table>
      <bdo id="ecio8"></bdo>
    • <s id="ecio8"></s>

      代寫 COMP6685 Deep Learning

      時間:2024-07-10  來源:  作者: 我要糾錯


      COMP6685 Deep Learning

      RETRIEVAL ASSESSMENT

      INDIVIDUAL (100% of total mark)

      Deliverables:                      1x Jupyter notebook

      Task: You are required to develop a phyton code using TensorFlow (Keras) with additional comments to answer the question in the next section. Your code should be able to run on CPUs.

      Create a code, in the provided template in Moodle, to train a Recurrent Neural Network (RNN) on the public benchmark dataset named Poker Handavailable at https://archive.ics.uci.edu/ml/datasets/Poker+Hand .

      Poker Hand dataset is composed of one training set named “poker-hand- training-true.data” and one testing set named “poker-hand-testing.data” .

      You will need to download both training and testing sets into your local disk by clicking the Download hyperlink (in the top right button of the page).

      In Poker Hand dataset, each data sample (row) is an example of a hand  consisting of five playing cards drawn from a standard deck of 52. Each card is described using two attributes (suit and rank), for a total of 10 predictive attributes. There is one Class attribute that describes the "Poker Hand". You can find more information about this dataset from:

      https://www.kaggle.com/datasets/rasvob/uci-poker-hand-dataset

      The dataset should be imported in the code. An example on how to import the dataset to your code can be found from the link below:

      https://www.kaggle.com/code/rasvob/uci-poker-dataset-classification

      In this assignment, you are required to implement a single vanilla RNN (not

      LSTM nor GRU) and add a comment in each of the parameters chosen. The

      RNN should be trained with the training set and its performance should be evaluated on the testing set.

      You can determine the setting of the RNN (including, the number of layers, number of recurrent neurons in each layer, regularization, dropout, optimiser, activation function, learning rate, etc.) according to your own preference. However, it is important that the RNN can achieve good classification performance in terms of accuracy on the testing set after being trained on the training set for no more than 40 epochs.

      An acceptable classification accuracy rate on the testing set should be above 65%, namely, more than 65% of the testing data samples are correctly classified by the RNN model. You are also required to present the confusion matrix along with the classification accuracy as the final prediction result.

      All main settings should be commented in the line code. The output of each code block and the training progresses of the RNN models should be kept in the submitted jupyter notebook file. A question about final remarks on the results will be answered on the markdown defined in the template.

      Submission:

      •    by Moodle within the deadline of Monday, 5th August 2024, before the cutoff at 23.55

      •   Submit only a jupyter notebook file. Use the template provided. The comments should be included in the file as comments in code or in the markdown space allocated.

      •   Your jupyter notebook file name should include your Student ID, Name

      Marking Scheme (100 marks for the assessment that corresponds to 25% of the total mark of the module):

      •    Importing the dataset (both training set and testing set). (10 marks)

      •   Correct definition and implementation of the RNN; (20 marks)

      •   Training of the RNN on the training set (10 marks)

      •    Evaluate the model on the testing set (10 marks)

      •   Acceptable  classification  accuracy  on the testing set with confusion matrix presented (20 marks)

      •   Code outline, including useful comments in the code (10 marks)

      •   Code running without errors (10 marks)

      •    Final remarks/conclusions on the obtained results and ideas for further improvement of the accuracy (10 marks)

       

      請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





       

      標簽:

      掃一掃在手機打開當前頁
    • 上一篇:代寫公式指標 代寫指標股票公式定制開發
    • 下一篇:FINS5542代做、代寫Java/c++設計程序
    • 無相關信息
      昆明生活資訊

      昆明圖文信息
      蝴蝶泉(4A)-大理旅游
      蝴蝶泉(4A)-大理旅游
      油炸竹蟲
      油炸竹蟲
      酸筍煮魚(雞)
      酸筍煮魚(雞)
      竹筒飯
      竹筒飯
      香茅草烤魚
      香茅草烤魚
      檸檬烤魚
      檸檬烤魚
      昆明西山國家級風景名勝區
      昆明西山國家級風景名勝區
      昆明旅游索道攻略
      昆明旅游索道攻略
    • 高仿包包訂製

      關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
      ICP備06013414號-3 公安備 42010502001045

      欧美成人免费全部观看天天性色,欧美日韩视频一区三区二区,欧洲美女与动性zozozo,久久久国产99久久国产一
    • <button id="ecio8"></button>
    • <li id="ecio8"></li>
      <s id="ecio8"></s>
      <dl id="ecio8"></dl>
      <center id="ecio8"><noscript id="ecio8"></noscript></center>
      • <table id="ecio8"><source id="ecio8"></source></table>
        <bdo id="ecio8"></bdo>
      • <s id="ecio8"></s>
        主站蜘蛛池模板: 欧美性xxxx极品hd欧美风情| 国产高中生粉嫩无套第一次| 日本动漫黑暗圣经| 天天色综合天天| 国产成a人亚洲精v品无码性色 | 国产精品无码素人福利不卡| 四虎影院wwww| 亚洲区精品久久一区二区三区| 亚洲美女在线观看播放| 久久影院最新消息| 99re5在线精品视频热线| 超碰97久久国产精品牛牛| 欧美精品va在线观看| 成人男女网18免费视频| 国产无遮挡又黄又爽高潮| 人妻少妇偷人精品无码| 久久丫精品国产亚洲av| 2021在线永久免费视频| 精品一区二区三区在线观看l| 日韩三级一区二区三区| 国产麻豆综合视频在线观看| 免费高清在线爱做视频| 久久久噜噜噜久久中文字幕色伊伊| 2020欧美极品hd18| 狠狠精品干练久久久无码中文字幕| 无码人妻久久一区二区三区不卡 | 五月天婷婷久久| 8x成年视频在线观看| 男人女人做30分爽爽视频| 成人精品一区二区久久| 出轨的女人hd中文字幕| 中文字幕日本电影| 麻豆国产成人AV在线| 欧美videossex精品4k| 国产黄大片在线观| 亚洲乱码精品久久久久..| 4虎2022年最新| 最近中文字幕电影在线看| 国产欧美视频一区二区三区| 亚洲国产成人久久综合一| 456亚洲视频|